Regularization for deep-learning models
Ways to adress overfitting
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- Overfitting

m the phenomenon of fitting training data too well (learning by
heart)

m not capturing general structure but fitting of noise
m loss of ability to generalize to unseen samples
= Tradeoff between capturing training information well enough but
not exactly memorize it

Regularization methods aim to reduce overfitting and improve the mod-
els ability to generalize to unseen data.
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Example of overfitting
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= \Why?

m goal: from representative sample = learn about data-generation
mechanism (unknown distribution P)

m model f should minimize the expected error over P = infeasible

Ex~pL(f(x),y)

m instead have to minimize over training samples

LN
NZ L (F(xi). yi) (1)
i=1

m possible over-adaptation to these N points (which is the
mathematical goal, but not what we actually want)

= model might not learn the general concepts
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= \When?

m on small datasets
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— Early stopping
m stop training procedure before model over-adapts

Error
A

Early Testing Error

Termination

Training Error

1 Training Steps

Figure: https://hackernoon. com/
memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-macl
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Penalize weights

m constraints on allowed parameters restrict model capacity
m modify the loss function by adding penalty term R (A > 0 controls
strictness of penalty)

N
S L(FG) ) + A+ R(F) )
=1

m tradeoff between fit and regularization needs to be found by
optimizer
m L1 regularization (wk are weights of the network function f):

M
R(F) = |wl (3)
k=1
m L2 regularization
M
R(F) = lIwel? (4)
k=1 (g PA®
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— Dropout

m randomly knock-out (ignore) neurons of a layer (only during
training!)
m implicetly train many sub-networks

m forces the net to distribute its information (all neurons have to be
able to do the job)

m might need longer training time

(a) Standard Neural Net (b) After applying dropout.

Figure: Subnetwork after randomly dropping some neurons.
(g A
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Data augmentation

E an easy way to get "more data"

m done by random transformations (rotate, flip, zoom, shift, ...) on
training set

m increases variability of your data

m due to randomness, the net can’t focus on a small subset =
harder to overfit

W0 10 20 250

Figure: Original data (top) and augmented data (bottom)i.'iZ:’R
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Batch normalization: Motivation

m Motivation: during learning weights change

= neuron outputs change = next layer has to adapt to that change
of scale (covariate shift)

m normalize each feature of training batch (zero mean, unit variance
for each feature dimension)

= avoids layer inputs to change on orders of magnitude

m inserted before nonlinear activations to avoid saturation (vanishing
gradients)

m each input representation influenced by random batch = harder to
'memorize’ fixed representation
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Input: Values of x over a mini-batch: B = {z, . };
Parameters to be leamed: ~, 3
Output: {y, = BN, 5(z;)}
Lo
— = i J// mini-batch
HE = — ; T mini-batch mean
Lo
2 2 - :
— — I -batch
op — - g[r, HB) mini-batch variance
i B // normalize
A D’BE + €
yi & 97+ 3 = BN, al) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation = over a mini-batch.

Figure: https://towardsdatascience.com/
batch-normalization-in-neural-networks-1ac91516821c

m network can focus on learning, not rescaling
m allows higher learning rates
m at test time works differently:
m can't use batch means and variances
m use running averages obtained during training oo
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- role of v and S

m last step of algorithm allows rescaling
m parameters are learned during training

m handle cases where normalized data might not be optimal =
model learns that
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day2/notebooks/regularization_cat_dog-mine
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