Convolutional Neural Networks
Jeffrey Kelling

23rd September 2018

HooR

ﬁ HELMHOLTZ

ZENTRUM DRESDEN
ROSSENDORF




.Convolutional Neural Networks

m overcome problems of MLPs:
m too many connections required for complex input data
m overfitting
= very hard or impossible to train

m introduce specialized layers,
forcing the network to form a specific hierarchy

m in principle, MLPs could learn the same
® ... just narrowing the search space
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Convolutional Neural Networks Il

m layers inspired by steps classical approaches use,
for images:

m convolution

Keras Layers: Conv2D; Conv1D; Conv2DTranspose;
m pooling (max, mean, ...)

Keras Layers: MaxPooling2D; AveragePooling2D;
m convolutions can also downample when strided
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= Convolution Filter
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= Cat vs Pixels
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What the computer sees

. 82% cat
" 15% dog
2% hat

1% mug

image classification
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- Convolution |

m Multiply sliding window of input with small filter to produce output
activations
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Convolution |

m Multiply sliding window of input with small filter to produce output
activations

m Multiple convolution filters lead to multiple activation maps
m Borders may be padded or skipped
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= Convolution |1

m Filters are usually small: 3 x3or5x5
m Stride > 1 leads to downsampling
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Tensor Representation of Layers
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m convolution and pooling layers assign higher-dimensional topology
to layers:

m (x,y) image dimensions + color channels = 3 dimensions

m convolutions sum over all input channels (or excess dimensions)
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= Convolutional Neural Networks 111
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Hierarchical Representations

Low-level Mid-level High-level Trainable
feature feature feature classifier

1Zeiler & Fergus 2013
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- Feature Hierarchies

m DNNs learn a hierarchy of representations
m stages of trainable feature transforms ...

m Image recognition:
pixel — edge — texton — motif — part — object

m Text:
character — word — word group — clause — sentence — story

m Speech:
sample — spectral band — sound — ... — phoneme — word
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Exercise

day2/notebooks/convnets_cifari10
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- One-Hot Encoding

m Neural network classification results usually use one-hot encoding
m One output neuron per class
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