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Convolutional Neural Networks

overcome problems of MLPs:
too many connections required for complex input data
overfitting

⇒ very hard or impossible to train

introduce specialized layers,
forcing the network to form a specific hierarchy

in principle, MLPs could learn the same
... just narrowing the search space
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Convolutional Neural Networks II

layers inspired by steps classical approaches use,
for images:

convolution
Keras Layers: Conv2D; Conv1D; Conv2DTranspose; ...
pooling (max, mean, ...)
Keras Layers: MaxPooling2D; AveragePooling2D; ...

convolutions can also downample when strided
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Convolution Filter

Jeffrey Kelling | Department of Information Services and Computing | http//www.hzdr.de
Member of the Helmholtz AssociationPage 3/12



Cat vs Pixels
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Convolution I

Multiply sliding window of input with small filter to produce output
activations

Multiple convolution filters lead to multiple activation maps

Borders may be padded or skipped

O6 = A1I1 + A2I2 + A3I3

+ A4I5 + A5I6 + A6I7

+ A7I9 + A8I10 + A9I11
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Convolution I

Multiply sliding window of input with small filter to produce output
activations

Multiple convolution filters lead to multiple activation maps

Borders may be padded or skipped

O17 = B5I1 + B6I2

+ B8I5 + B9I6
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Convolution II

Filters are usually small: 3× 3 or 5× 5
Stride > 1 leads to downsampling
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Tensor Representation of Layers

convolution and pooling layers assign higher-dimensional topology
to layers:

(x, y) image dimensions + color channels = 3 dimensions

convolutions sum over all input channels (or excess dimensions)
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Convolutional Neural Networks III
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Hierarchical Representations

Feature visualization of convolutional net trained on ImageNet1

1Zeiler & Fergus 2013
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Feature Hierarchies

DNNs learn a hierarchy of representations

stages of trainable feature transforms ...

Image recognition:
pixel → edge → texton → motif → part → object

Text:
character → word → word group → clause → sentence → story

Speech:
sample → spectral band → sound → ... → phoneme → word
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Exercise

day2/notebooks/convnets_cifar10
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One-Hot Encoding
Neural network classification results usually use one-hot encoding
One output neuron per class

inference

0 1 2 N

class 0
cat

class 1
dog

class 2
hat

... class N
mug
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