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Unspervised Learning. Autoencoders

Training using unlabelled data

Optimization goal is to reconstruct input image as output

Bottleneck forces network to learn feature-based representation

figure: Julien Despois @ medium.com
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Why?

1 Latent space smaller tahn input ⇒ compression
− errors hard to control

2 Discovery of frequent patterns in data
what gets a place in latent space is common
anomaly-detection: rare samples will have high reconstruction errors

3 Discovery of features with convolutional autoencoders
Use encoder as pretrained part of classification of other network
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Unspervised Learning—Google Brain I

Deep convolutional autoencoder trained using images from “the
internet”1

One neuron in the bottleneck
reacts strongly to faces ...

... it is most strongly excited by
this face:

1Le, Ranzato et al. 2011
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Unspervised Learning—Google Brain II

Concepts common in the training data automatically learned

cat face human body
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Exercise 1: Autoencoder

day4/notebooks/MNISTAutoencoder
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Specialized embedding algorithms

GloVe https://nlp.stanford.edu/projects/glove/

word2vec https://arxiv.org/abs/1301.3781

https://www.aclweb.org/anthology/N13-1090

Uniform Manifold Approximation and Projection (umap)
https://github.com/lmcinnes/umap
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Generative Models

1 Autoencoders

2 Generative Models
Variational Autoencoders
Generative Adversarial Networks (GANs)
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Variational Autoencoders I

autoencoder which learns the distribution of (input) latent space
samples

assuming multi-dimensional gaussian
learning vectors mean ~µ and standard deviation ~σ

learned distribution is sampled to generate output
⇒ generative model

input encoder

~µ

~σ

sampled
latent
vector

decoder output

latent space

Jeffrey Kelling | Department of Information Services and Computing | http//www.hzdr.de
Member of the Helmholtz AssociationPage 10/13



Variational Autoencoders I

input encoder

~µ

~σ

sampled
latent
vector

decoder output

latent space

loss needs to maximize reconstruction and gaussianity of input
latent space vectors

loss = reconLoss +
∑
KLDivergence(µi , σi)
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Generative Adversarial Networks (GANs)

two networks competing in a zero-sum game during training
D Discriminator: distingiush between real and generated input
G Generator: generate samples, which the discriminator labels as real

real
samples

random
input

generator generated
data

disciminator loss

also as modified loss function, e.g. when training auto-encoders
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Exercise 2: Variational Autoencoder

day4/notebooks/MNISTVAE
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